

Jaya College of Arts and Science, Thiruninravur-602024.

Department of Computer Applications

Year : 2020-2021

Programme Offered :

> M.C.A

Programme Objective :

	Computational Knowledge:
PO 1:	Understand and apply mathematical foundation, computing and domain
	knowledge for the conceptualization of computing models from defined
	problems
	Problem Analysis:
PO 2:	Ability to identify, critically analyze and formulate complex computing
	problems using fundamentals of computer science and application domains
	Design / Development of Solutions:
DO 2.	Ability to transform complex business scenarios and contemporary issues into
PO 3:	problems, investigate, understand and propose integrated solutions using
	emerging technologies
	Conduct Investigations of Complex Computing Problems:
PO 4:	Ability to devise and conduct experiments, interpret data and provide well
	informed conclusions
	Modern Tool Usage:
PO 5:	Ability to select modern computing tools, skills and techniques necessary for
	innovative software solutions
PO 6:	Professional Ethics:
	Ability to apply and commit professional ethics and cyber regulations in a
	global economic environment
	Life-long Learning:
PO 7:	Recognize the need for and develop the ability to engage in continuous learning
	as a Computing professional

	Project Management and Finance:
PO 8:	Ability to understand, management and computing principles with computing
	knowledge to manage projects in multidisciplinary environments
	Communication Efficacy:
PO 9:	Communicate effectively with the computing community as well as society by
	being able to comprehend effective documentations and presentations
PO 10.	Societal & Environmental Concern:
	Ability to recognize economical, environmental, social, health, legal, ethical
FO 10.	issues involved in the use of computer technology and other consequential
	responsibilities relevant to professional practice
	Individual & Team Work:
PO 11:	Ability to work as a member or leader in diverse teams in multidisciplinary
	environment
PO 12:	Innovation and Entrepreneurship:
	Identify opportunities, entrepreneurship vision and use of innovative ideas to
	create value and wealth for the betterment of the individual and society

Programme Outcome :

Programme	e Specific Outcomes
PSO 1:	Ability to pursue careers in IT industry/ consultancy/ research and
	development, teaching and allied areas related to computer science.
PSO 2:	Comprehend, explore and build up computer programs in the areas allied to
	Algorithms, System Software, Multimedia, Web Design and Big Data
	Analytics for efficient design of computer-based systems of varying
	complexity.

<u>First Semester</u>

Course components	Name of Course	lits	Max.Marks		TOTAL
Ĩ		Cred	CIA	UE	
Core–1	C++ & Data Structures	4	25	75	100
Core- 2	Digital Computer Fundamentals	4	25	75	100
Core- 3	Database Management Systems	4	25	75	100
Core- 4	Practical–I: Data Structures using C++	2	40	60	100
	Lab.				100
Core- 5	Practical–II: RDBMS Lab.	2	40	60	100
Extra – Disciplinary- I	Accounting & Financial Management	3	25	75	100
Elective I	Choose any one	3	25	75	100
Soft Skill-1	Choose any one	2	40	60	100

Second Semester

	Name of Course	Credits	Max. Marks			
Course components			CIA	UE	TOTAL	
Core – 6	Design and Analysis of Algorithms	4	25	75	100	
Core – 7	Object Oriented Analysis and	4	25	75	100	
	Design				100	
Core – 8	Artificial Intelligence	4	25	75	100	
Elective II	Choose any one	3	25	75	100	
Core – 9	Practical – III: Object Oriented	2	40	60	100	
	Analysis and Design Lab				100	
Core – 10	Practical – IV: Web Based	2	40	60	100	
	Application Development Lab.				100	
Extra-Disciplinary - II	Web Based Application	3	25	75	100	
	Development				100	
Soft Skill-2	Choose any one	2	40	60	100	
Soft Skill-3	Choose any one	2	40	60	100	
Internship	During I year summer vacation 4 to					
	6 weeks – Evaluation will be at the					
	end of third semester.					

Third Semester

		S	Max. Marks		
components	Name of Course	Credit	CIA	UE	TOTAL
Core – 11	Machine Learning	4	25	75	100
Elective III	Choose any one	3	25	75	100
Elective IV	Choose any one	3	25	75	100
Elective V	Choose any one	3	25	75	100
Core–12	Practical – V: Machine Learning Lab	2	40	60	100
Core -13	Practical – VI:Group Project	2	40	60	100
Soft Skill-4	Choose any one	2	40	60	100
Internship	During I year summer vacation 4 to 6 weeks	2			100

Fourth Semester

Course	Name of Course	Credits	Max. Marks		TOTAL
components			CIA	UE	
Core-14	Project & viva-voce	20	20	60+20	100

* CIA = Continuous Internal Assessment, UE = University Examination

Course Name: C++ and Data Structures

Course Objective:

- > CO1: The basic programming and OOPs concepts
- \triangleright CO2: Creating C++ programs
- > CO3: Tokens, expressions and control structures in C++
- > CO4: Arranging same data systematically with arrays
- > CO5: Be familiar with basic techniques of algorithm analysis
- > CO5: Be familiar with writing recursive methods
- CO6: Master the implementation of linked data structures such as linked lists and binary trees

Course OutCome:

- > CO1: Classify different data structures such as stack, queues, linked list, trees and graphs
- > CO2: Analyze and implement various searching and sorting techniques
- CO3: Describe OOPs concepts
- > CO4: Use functions and pointers in your C++ program
- > CO5 : Understand tokens, expressions, and control structures

Syllabus:

Unit 1:

Introduction to C++; Tokens, Keywords, Identifiers, Variables,Operators, Manipulators, Expressions andControlStructuresinC++; Pointers-FunctionsinC++- MainFunction-FunctionPrototyping-ParametersPassinginFunctions-ValuesReturnbyFunctions- InlineFunctions-FriendandVirtualFunctions

Unit-2:

ClassesandObjects;ConstructorsandDestructors;andOperatorOverloadingandType Conversions -Type of Constructors -Function overloading. Inheritance:SingleInheritance-MultileveIInheritance- MultipleInheritance-HierarchicalInheritance- HybridInheritance. Pointers, Virtual Functions and Polymorphism;Managing Console I/Ooperations. Unit3:

WorkingwithFiles:ClassesforFileStreamOperations-OpeningandClosingaFile-End-of-FileDeduction -File Pointers -Updating aFile -Error Handling duringFile Operations -Command-lineArguments.DataStructures:DefinitionofaDatastructure-Arguments.DataStructures:DefinitionofaDatastructure-primitiveandcompositeDataTypes,Asymptoticnotations,Arrays,OperationsonArrays,Orderlists.Unit-4:

Stacks - Applications of Stack - Infix to Postfix Conversion, Recursion, Maze Problems -Queues- Operations onQueues, QueueApplications, Circular Queue.Singly Linked List-Operations, Application - Representation of a Polynomial, PolynomialAddition; DoublyLinkedList-Operations, Applications. Unit-5:

TreesandGraphs:BinaryTrees-ConversionofForesttoBinaryTree,Operations- Tree Traversals; Graph - Definition, Types of Graphs, Hashing Tables andHashing Functions,Traversal-ShortestPath;Dijkstra'sAlgorithm.

Course name: Digital Computer Fundamentals

Course objective:

- CO1:Give students an in-depth understanding of why computers are essential components in business, education and society.
- CO2: -Introduce the fundamentals of computing devices and reinforce computer vocabulary, particularly with
- CO3: respect to personal use of computer hardware and software, the Internet, networking and mobile computing.
- CO4: -Provide hands-on use of Microsoft Office 2013 applications Word, Excel, Access and PowerPoint.
- CO5: Completion of the assignments will result in MS Office applications knowledge and skills.

Course OutCome:

- CO1:Describe the usage of computers and why computers are essential components in business and society.
- > CO2: Utilize the Internet Web resources and evaluate on-line e-business system.
- CO3: Solve common business problems using appropriate Information Technology applications and systems.
- CO4:Identify categories of programs, system software and applications. Organize and work with files and folders.
- CO5: Describe various types of networks network standards and communication software.

Syllabus:

Unit 1 :

Number System – Converting numbers from one base to another – Complements – Binary Codes – Integrated Circuits – Boolean algebra – Properties of Boolean algebra – Boolean functions – Canonical and Standard forms – Logical Operations – Logic gates – Karnaugh Map up to 6 variables – Don't Care Condition – Sum of Products and Products of Sum simplification – Tabulation Method.

Unit-2:

Adder – Subtractor – Code Converter – Analyzing a combinational Circuit – Multilevel NAND and NOR circuits – Properties of XOR and equivalence functions – Binary Parallel Adder – Decimal Adder – Magnitude Comparator – Decoders – Multiplexers – ROM – PLA.

Unit 3 :

Flip Flops – Triggering of flip-flops – Analyzing a sequential circuit – State reduction – excitation tables – Design of sequential circuits – Counters – Design with state equation – Registers – Shift Registers – Ripple and synchronous Counters.

Unit-4:

Memory Unit – Processor Organization - Bus Organization – Scratch Pad memory – ALU – Design of ALU – Status Register – Effects of Output carry – Design of Shifter – Processor Unit – Microprogramming – Design of specific Arithmetic Circuits

Unit-5 :

Accumulator – Design of Accumulator – Computer Design – System of Configuration – Instruction and Data formats – Instruction sets – Timing and Control – Execution of Instruction – Design of Computer – Hardwired control – PLA Control and Microprogram control

Course Name: Database Management Systems

Course Objective:

- CO1:Knowledge of DBMS, both in terms of use and implementation/design
- ► CO2: Experience with SQL
- ▶ CO3: Increased proficiency with the programming language C++
- ➢ CO4: Experience working as part of team
- CO5: Experience with analysis and design of (DB) software

Course OutCome:

- > CO1: Describe the fundamental elements of relational database management systems
- CO2: Explain the basic concepts of relational data model, entity-relationship model, relational database design, relational algebra and SQL.
- > CO3: Design ER-models to represent simple database application scenarios
- CO4: Convert the ER-model to relational tables, populate relational database and formulate SQL queries on data.
- CO5: Improve the database design by normalization.

Syllabus:

Unit 1: Introduction to Database Systems – Relational Model – Structure – Relational Algebra – Null Values – SQL – Set Operation – Views – Advanced SQL – Embedded SQL – Recursive Queries – The Tuple Relational Calculus – Domain Relational Calculus.

Unit 2: E-R Model – Constraints – E-R- Diagrams Weak Entity Sets – Reduction to Relational Schemes – Relational Database Design – Features of Relational Design – Automatic Domains and First Normal Form – Decomposition using Functional Dependencies – Multivalued Dependencies – More Normal Forms – Web Interface – Object – Based Databases – Structured Types and inheritance in SQL – Table inheritance – Persistent.

Unit 3: Storage and File Structure – RAID – File Organization – Indexing and Hashing – B Tree – B Tree Index files - Static and Dynamic Hashing – Query Processing – Sorting & Join Operators – Query Optimization – Choice of Evaluation Plans.

Unit 4:Transaction Management – Implementation of Atomicity and Durability – Serializability – Recoverability – Concurrency Control – Dead Lock Handling – Recovery System – Buffer Management.

Unit 5 : Database – System Architecture – Client Server – Architectures – Parallel System – Network Types – Distributed Database – Homogeneous and Hetrogeneous Database – Directory System – Case Study

Course Name: Data Structures using C++ Lab

Course Objective:

- > CO1: To provide the knowledge of basic data structures and their implementations.
- > CO2: . To understand importance of data structures in context of writing efficient programs.
- ▶ CO3: To develop skills to apply appropriate data structures in problem solving.

Course OutCome:

- > CO1: Be able to design and analyze the time and space efficiency of the data structure
- > CO2: Be capable to identity the appropriate data structure for given problem
- ► CO3: Have practical knowledge on the applications of data structures

Syllabus:

For the implementation of the following problems, the students are advised to use all possible objectoriented feat ures. The implementation based on structured concepts will not accepted.

- 1. Implementation of Arrays(Single and Multi-Dimensional)
- 2. Polynomial Object and necessary overloaded operators.
- 3. Singly Linked Lists.
- 4. Circular Linked Lists.
- 5. Doubly Linked Lists.
- 6. Implementation of Stack(using Arrays and Pointers)
- 7. Implementation of Queue(Using Arrays and Pointers)
- 8. Implementation of Circular Queue(using Arrays and Pointers)
- 9. Evaluation of Expressions.
- 10.Binary Tree implementations and Traversals.
- 11. Binary Search Trees.

Course Name: Practical – II: RDBMS Lab

Course Objective:

- CO1: to provide a sound introduction to the discipline of database management as a subject in its own right, rather than as a compendium of techniques and product-specific tools.
- CO2: to familiarize the participant with the nuances of database environments towards an information-oriented data-processing oriented framework
- > CO3: to give a good formal foundation on the relational model of data
- > CO4: to present SQL and procedural interfaces to SQL comprehensively
- CO5: to give an introduction to systematic database design approaches covering conceptual design, logical design and an overview of physical design

Course OutCome:

- CO1: Understand, appreciate and effectively explain the underlying concepts of database technologies
- > CO2: Design and implement a database schema for a given problem-domain
- ➢ CO3: Normalize a database
- > CO4: Populate and query a database using SQL DML/DDL commands.
- > CO5: Declare and enforce integrity constraints on a database using a state-of-the-artRDBMS
- > CO6: Programming PL/SQL including stored procedures, stored functions, cursors, packages.
- ➢ CO7: Design and build a GUI application using a 4GL

SYLLABUS:

- 1. Library Information Processing.
- 2. Students Mark sheet processing.
- 3. Telephone directory maintenance.
- 4. Gas booking and delivery system.
- 5. Electricity Bill Processing.
- 6. Bank Transactions (SB).
- 7. Pay roll processing.
- 8. Inventory
- 9. Question Database and conducting quiz.
- 10. Purchase order processing.

I Year & II Semester

Course Name: Design and Analysis of Algorithms

Course Objective:

- > CO1:Analyze the asymptotic performance of algorithms.
- CO2:Write rigorous correctness proofs for algorithms
- > CO3:Demonstrate a familiarity with major algorithms and data structures.
- > CO4:Apply important algorithmic design paradigms and methods of analysis.
- > CO5:Synthesize efficient algorithms in common engineering design situations.

Course OutCome:

- > CO1 Argue the correctness of algorithms using inductive proofs and invariants.
- > CO2:Analyze worst-case running times of algorithms using asymptotic analysis.
- > CO3:Describe the divide-and-conquer paradigm and explain when an algorithmic design
- CO4:situation calls for it. Recite algorithms that employ this paradigm. Synthesize divide-and-CO5:conquer algorithms. Derive and solve recurrences describing the performance of divide-and-conquer algorithms.
- CO6: Describe the dynamic-programming paradigm and explain when an algorithmic design situation calls for it. Recite algorithms that employ this paradigm. Synthesize dynamicprogramming algorithms, and analyze them.

Syllabus:

Unit 1: Introduction - Definition of Algorithm – pseudocode conventions – recursive algorithms – time and space complexity –big-"oh" notation – practical complexities – randomized algorithms – repeated element – primality testing - Divide and Conquer:General Method - Finding maximum and minimum – merge sort.

Unit-2: Divide and conquer contd. – Quicksort, Selection, Strassen's matrix multiplication – Greedy Method:General Method –knapsack problem - Tree vertex splitting - Job sequencing with dead lines – optimal storage on tapes.

Unit 3: Dynamic Programming: General Method - multistage graphs – all pairs shortest paths – single source shortest paths - String Editing – 0/1 knapsack.Search techniques for graphs – DFS-BFS-connected components – biconnected components.

Unit 4:Back Tracking: General Method – 8-queens - Sum of subsets - Graph Coloring – Hamiltonian cycles. Branch and Bound: General Method - Traveling Salesperson problem.

Unit 5: Lower Bound Theory:Comparison trees - Oracles and advisory arguments - Lower bounds through reduction - Basic Concepts of NP-Hard and NP-Complete problems.

Course Name: Object Oriented Analysis and Design

Course Objective:

- CO1:To understand the Object-based view of Systems
- CO2:To develop robust object-based models for Systems
- > CO3:To inculcate necessary skills to handle complexity in software design
- CO4:To learn the basis of OO Analysis and design
- CO5:To have clear idea about traditional and modern SW development Methodologies and OOPS concepts.
- > CO6: To identify objects, relationships, services and attributes
- > CO7: To introduce the concept of Object-oriented system development lifecycle
- > CO8:Discuss the overview of Object oriented methodologies

Course OutCome:

- > CO1. Analyse, design, document the requirements through use case driven approach.
- > CO2.Identify, analyse, and model structural and behavioural concepts of the system.
- ► CO3.Develop,explore the conceptual model into various scenarios and applications.
- > CO4.Apply the concepts of architectural design for deploying the code for software.

Syllabus

Unit 1: System Development - Object Basics - Development Life Cycle - Methodologies - Patterns - Frameworks - Unified Approach - UML.

Unit-2: Use-Case Models - Object Analysis - Object relations - Attributes - Methods – Class and Object responsibilities - Case Studies.

Unit 3: Design Processes - Design Axioms - Class Design - Object Storage - Object Interoperability - Case Studies.

Unit-4: User Interface Design - View layer Classes - Micro-Level Processes - View Layer Interface - Case Studies.

Unit-5: Quality Assurance Tests - Testing Strategies - Object orientation on testing - Test Cases - test Plans - Continuous testing - Debugging Principles - System Usability - Measuring User Satisfaction -Case Studies.

Course Name: Artificial Intelligence

Course Objective:

- CO1:The aim of Artificial Intelligence & Machine Learning course is to prepare students for career in computer science & engineering where knowledge of AI & ML techniques leading to the advancement of research and technology
- > CO2:Artificial Intelligence and Machine Learning are the terms of computer science.
- CO3:Machine Learning is the learning in which machine an learn by its own without being explicitly programmed.
- CO4:It is an application of AI that provide system the ability to automatically learn and improve from experience

Course OutCome:

- CO1: Apply basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation, and learning.
- > CO2:Demonstrate proficiency in applying scientific method to models of machine learning.
- > CO3:Discuss the awareness of ANN and different optimizations techniques
- CO4: Apply basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation, and learning.
- > CO5: Demonstrate proficiency in applying scientific method to models of machine learning.
- > CO6:Discuss the basics of ANN and different optimizations techniques.

Syllabus:

UNIT I:

Introduction: What Is AI? - Foundations of Artificial Intelligence-The History of Artificial Intelligence-The State of the Art- Risks and Benefits of AI. Intelligent Agents: Agents and Environments - The Concept of Rationality - The Nature of Environments- The Structure of Agents.

UNIT II:

Solving problem by Searching: Problem-Solving Agents - Example Problems - Search Algorithms: Bestfirst search - Search data structures - Redundant paths - Measuring problem-solving performance -Uninformed Search Strategies: BFS-DFS- Depth limited and iterative deepening search. Heuristic Search Strategies: Greedy best-first search - A* search - Search contours - Inadmissible heuristics and weighted A* - Heuristic Functions.

UNIT III:

Local Search and Optimization Problems:Hill-climbing search - Simulated annealing - Local beam search - Local Search in Continuous Spaces - Search with Nondeterministic Actions: The erratic vacuum world - AND—OR search trees. Optimal Decisions in Games: The minimax search algorithm - Optimal decisions in multiplayer games - Alpha--Beta Pruning. Heuristic Alpha--Beta Tree Search: Evaluation functions - Cutting off search - Forward pruning - Monte Carlo Tree Search - Stochastic Games-Limitations of Game Search Algorithms.

UNIT IV:

Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems - Constraint Propagation: Inference in CSPs - Backtracking Search for CSPs - Local Search for CSPs - The Structure of Problems. Logical agent and Logics: Propositional Logic - Propositional Theorem Proving - Effective Propositional Model Checking - Agents Based on Propositional Logic - First-Order Logic: Syntax and Semantics of First-Order Logic - Using First-Order Logic - Knowledge Engineering in First-Order Logic. Inference in First-Order Logic: Unification and First-Order Inference - Forward Chaining - Backward Chaining - Resolution.

UNIT V:

Knowledge Representation and Reasoning : Ontological Engineering - Categories and Objects - Events -Mental Objects and Modal Logic - Reasoning Systems for Categories - Reasoning with Default Information. Automated Planning: Definition of Classical Planning - Algorithms for Classical Planning -Heuristics for Planning. Quantifying Uncertainty: Acting under Uncertainty - Basic Probability Notation -Inference Using Full Joint Distributions - Independence - Bayes' Rule and Its Use - Naive Bayes Models

Course Name: Web Based Application Development Course Objective:

- CO1: Understand the principles of creating an effective web page, including an in-depth consideration of information architecture.
- CO2:Become familiar with graphic design principles that relate to web design and learn how to implement theories into practice.
- > CO3:Develop skills in analyzing the usability of a web site.
- > CO4:Understand how to plan and conduct user research related to web usability.
- ➤ CO6: Learn the language of the web: HTML and CSS.
- > CO6: Learn CSS grid layout and flexbox.

Course OutCome:

- > CO1: Students will be able to write a well formed / valid XML document.
- CO2:Students will be able to connect a java program to a DBMS and perform insert, update and delete operations on DBMS table.
- CO3:Students will be able to write a server side java application called Servlet to catch form data sent from client, process it and store it on database.
- CO7:Students will be able to write a server side java application called JSP to catch form data sent from client and store it on database

Syllabus:

Unit – I: OVERVIEW OF ASP.NET - The .NET framework – The C# Language: Data types – Declaring variables- Scope and Accessibility- Variable operations- Object Based manipulation- Conditional Structures- Loop Structures- Methods. Types, Objects and Namespaces : The Basics about Classes-Value types and Reference types- Understanding name spaces and assemblies - Advanced class programming.

Unit – **II**: Developing ASP.NET Applications - The Anatomy of a Web Form – Writing Code - Visual Studio Debugging. Web Form Fundamentals: The Anatomy of an ASP.NET Application - Introducing Server Controls - HTML Control Classes - The Page Class - Application Events - ASP.NET Configuration. Web Controls: Web Control Classes - List Controls - Web Control Events and AutoPostBack - A Simple Web Page.

Unit – III: Error Handling, Logging, and Tracing: Common Errors - Exception Handling - Handling Exceptions - Throwing Your Own Exceptions - Logging Exceptions - Page Tracing. State Management: View State - Transferring Information Between Pages – Cookies - Session State - Session State Configuration - Application State. Validation: Understanding Validation - The Validation Controls.

Unit – **IV:** Rich Controls: The Calendar - The AdRotator - Pages with Multiple Views - User Controls and Graphics - User Controls - Dynamic Graphics . Website Navigation: Site Maps - URL Mapping and Routing - The SiteMapPath Control - The TreeView Control - The Menu Control. ADO.NET Fundamentals: The Data Provider Model - Direct Data Access - Disconnected Data Access.

Unit – V: Data Binding: Single-Value Data Binding - Repeated-Value Data Binding - Data Source Controls - The Data Controls: The GridView - Formatting the GridView - Selecting a GridView Row - Editing with the GridView - Sorting and Paging the GridView - Using GridView Templates - The DetailsView and FormView – XML: The XML Classes - XML Validation - XML Display and Transforms. Website Security: Security Fundamentals - Understanding Security - Authentication and Authorization - Forms Authentication - Windows Authentication.

Course Name: Object Oriented Analysis and Design Lab

Course Objective:

- > CO1 : Specify, analyze and design the use case driven requirements for a particular system.
- CO2:Model the event driven state of object and transform them into implementation specific layouts.
- CO3:Identify, Analyze the subsystems, various components and collaborate them interchangeably.

Course OutCome:

- > CO1. Analyse, design, document the requirements through use case driven approach.
- > CO2.Identify, analyse, and model structural and behavioural concepts of the system.
- CO3.Develop, explore the conceptual model into various scenarios and applications.
- > CO4.Apply the concepts of architectural design for deploying the code for software.

<u>Syllabus</u>

Software: Rational Rose or Any UML case Tools

OBJECTIVE: To Design UML and Use case diagram for given scenario/domain using OOAD methodologies by capturing the key functional requirements listed below:

- 1. Identify Use Cases and develop the Use Case model.
- 2. Identify the business activities and develop an UML Activity diagram.
- 3. Identity the conceptual classes and develop a domain model with UML Class diagram.
- 4. Using the identified scenarios find the interaction between objects and represent them using UML Interaction diagrams.
- 5. Draw the State Chart diagram.
- 6. Identify the User Interface, Domain objects, and Technical services. Draw the partial layered, logical architecture diagram with UML package diagram notation.
- 7. Implement the Technical services layer.
- 8. Implement the Domain objects layer.
- 9. Implement the User Interface layer.
- 10. Draw Component and Deployment diagrams.

Suggested domains for Practical/Lab Experiment

- 1. Student information system.
- 2. Stock Maintenance System.
- 3. Banking system.
- 4. Online course reservation system.
- 5. Exam Registration.
- 6. Employee Management System.
- 7. Project Tracking System.
- 8. Library Information System.
- 9. E-ticketing
- 10. E-book management system.
- 11. Recruitment system.
- 12. Conference Management System.
- 13. BPO Management System.
- 14. Credit card processing.

Course Name: Web Based Application Development Lab

Course Objective:

- CO1: Design and implement dynamic websites with good aesthetic sense of designing and latest technical know-how's.
- CO2: Have a Good grounding of Web Application Terminologies, Internet Tools, E Commerce and other web services.
- > CO3: Get introduced in the area of Online Game programming.
- CO4: Understand the principles of creating an effective web page, including an in-depth consideration of information architecture.
- CO5: Become familiar with graphic design principles that relate to web design and learn how to implement theories into practice.
- > CO6: Develop skills in analyzing the usability of a web site.
- > CO7: Understand how to plan and conduct user research related to web usability.
- ➤ CO8:Learn the language of the web: HTML and CSS.

Course OutCome:

- > CO1: Comprehend and propose Web Application infrastructure.
- CO2: Apply client/server communication techniques such as server, application, session variables, cookies and server behaviours.
- \triangleright CO3: Determine the needs for web database and connectivity.
- > CO4: Apply code reuse with templates, libraries, and snippets.
- CO5: Evaluate several alternatives in the design of a web application.
- CO6:Develop a functional web application

Syllabus:

- 1. Create a Multilevel inheritance for Employee using appropriate data members and methods using C#.
- 2. Create an application form to apply for a new course in a college, fill the information and submit it (Use Basic Web Server controls).
- 3. Create a web application using Global.asax file which will count the number of visitors on web page.
- 4. Design a web page to implement upload and download files functionality using File Upload Control.
- 5. Develop a web page to implement the concept of state management using Cookies
- 6. Develop a web page to implement the concept of state management using Session and Application
- 7. Develop a web page to implement the concept of state management using ViewState and QueryString.
- 8. Design Sign Up form and validate User Name (Minimum 8 character Maximum 15 and only characters and underscore), Password (Minimum 8 Characters) and Confirm_Password (Both should be same), Phone No (Only digits), Email-id etc. (Use Validation controls).
- 9. Create a web site using Master Page Concept having two content pages.
- **10.** Write sample application to connect to database, Fetching and inserting data from database and using Data Reader
- **11.** Create Employee database and develop a web application to Add, Update, View and Delete records from database using in Gridview control.
- **12.** Create Student database and develop a web application to Add, Update, View and Delete records from database using in Gridview control.
- 13. Create a web form for Online Library data entry and manipulate records using C#.NET.
- 14. Design a web page to display the XML content.
- **15.** Design a web application to demonstrate form authentication and authorization.

II Year & III Semester

Course Name: Machine Learning

Course Objective:

- CO1:The aim of Artificial Intelligence & Machine Learning course is to prepare students for career in computer science & engineering where knowledge of AI & ML techniques leading to the advancement of research and technology.
- CO2: Artificial Intelligence and Machine Learning are the terms of computer science. Machine Learning is the learning in which machine an learn by its own without being explicitly programmed.
- CO3: It is an application of AI that provide system the ability to automatically learn and improve from experience.

Course OutCome:

- > CO1 Demonstrate fundamental understanding of artificial intelligence (AI) and expertsystems.
- ➢ CO2:Apply basic principles of AI solutions that require problem in solving, inference, perception, knowledge representation, and learning.
- CO3 Demonstrate proficiency in applying scientific method to models of machine learning.
- CO4:Discuss the awareness of ANN and different optimizations techniques
- CO5: Apply basic principles of AI in solutions that require problem solving, inference, perception, knowledge representation, and learning.
- CO6:Demonstrate proficiency in applying scientific method to models of machine learning.
- CO7:Discuss the basics of ANN and different optimizations techniques

Syllabus

Unit 1: The Fundamentals of Machine Learning: The Machine Learning Landscape - Types of Machine Learning Systems - Main Challenges of Machine Learning - Testing and Validating. End-to-End Machine Learning Project - Look at the Big Picture - Get the Data - Discover and Visualize the Data to Gain Insights - Prepare the Data for Machine Learning Algorithms - Select and Train a Model - Fine-Tune Your Model - Launch, Monitor, and Maintain Your System.

Unit 2: Ingredients of machine learning: Tasks – Models – Features. Supervised Learning: Classification – Binary classification and related tasks – Scoring and ranking – class probability estimation – Multi-class classification. Unsupervised Learning: Regression – Unsupervised and descriptive learning. Concept Learning: The hypothesis space – paths through the hypothesis space – beyond conjunctive concepts – learnability.

Unit 3: Tree Models: Decision trees – Ranking and probability estimation trees – tree learning as variance reduction. Rule Models: Learning ordered rule lists – learning unordered rule sets – descriptive rule learning – first–order rule learning. Linear Models: The least-squares method – The perceptron – Support vector machines.

Unit 4: Distance-based Models: Neighbours and exemplars – Nearest-neighbour classification – Distance-based clustering – K-Means algorithm – Hierarchical clustering. Probabilistic Models: The normal distribution and its geometric interpretations – probabilistic models for categorical data – Naïve Bayes model for classification – probabilistic models with hidden values – Expectation-Maximization.

Unit 5: Features: Kinds of features – Feature transformations – Feature construction and selection. Model ensembles: Bagging and random forests – Boosting – Mapping the ensemble landscape. Machine Learning experiments: What to measure – How to measure it – How to interpret it.

Course Name: : Machine Learning Lab

Course Objective:

- > CO1: To understand the basic theory underlying machine learning.
- > CO2: To be able to formulate machine learning problems corresponding to different applications.
- CO3: To understand a range of machine learning algorithms along with their strengths and weaknesses.
- > CO4: To be able to apply machine learning algorithms to solve problems of moderate complexity.
- CO5:To apply the algorithms to a real-world problem, optimize the models learned and report on the expected
- > CO6: accuracy that can be achieved by applying the models.

Course OutCome:

- > *Col:Design* and evaluate the unsupervised models through python in built functions.
- Co2:Evaluate the machine learning models pre-processed through various feature engineering algorithms by python programming.
- > Co3:Design and apply various reinforcement algorithms to solve real time complex problems.
- > *Co4:Design* and *develop* the code for recommender system using Natural Language processing
- > *Con5:Understand* the basic concepts of deep neural network model and design the same.

Syllabus:

Machine Learning Tools and Applications:

Machine learning platform: WEKA machine learning workbench, R platform, Python Scipy. Machine Learning Library: scikit-learn in Python, JSAT in Java, Accord Framework in .NET

GUIs: KNIME, <u>RapidMiner</u>, Orange.

Applications: Prediction using data, Speech recognition, Healthcare, Object recognition in images, Natural Language Processing, Online search

- 1. Data Preprocessing:
 - a. Data Cleaning
 - b. Data Transformation
 - c. Data Reduction
 - d. Feature extraction
- 2. Supervised learning:
 - a. Decision tree classification
 - b. Classification using Support Vector Machines
 - c. Classification using Multilayer perceptron
- 3. Unsupervised learning:
 - a. Regression
 - b. K-Means clustering
 - c. Hierarchical clustering

Mini Project: Application of Data Preprocessing techniques and Machine Learning techniques on a data set selected from UCI repository / Kaggle / Government and submission of a report.